Simple Networked FPS

Sébastien Feser

January 21, 2020



Simple Networked FPS Sébastien Feser

1 Introduction

Welcome to the technical document of the Simple FPS game. This game was
created for the GPR5100.1 module of the Geneva SAE Institute Games Pro-
gramming module. The goal of this module is to create a small multiplayer
game.

This game was Developed with Unity 2019.3.0f3 with the Photon Pun 2.16
technology.

2 Game Mechanics

Your Score
=100

|

The player starts in a map. His goal is to shoot his opponents. Each kills grants
100 points to the player. The first player that reaches 1’000 points wins the
game.

e Shooting: The player can shoot balls in the direction he aims. The balls
are going straight forward. Each ball one shot the other player. When a
player gets killed, it grants points to the player who shot the ball.

2.1 Controls
e Movement: The player can move using the keys W,A S and D.

e CameraRotation: The player can move the camera with the mouse.

e Shooting: The player can shoot using the left click of the mouse.



Simple Networked FPS

Sébastien Feser

3 Game Organisation

3.1 Lobby Organisation

Start Button

Game

Join Random

—» Game Start

Login Button

Launched

Room

if Login Button Pressed:
The Player Name will be assigned in
PhotonNetwork.LocalPlayer.NickName and
the player connect to a lobby with the function
PhotonNetwork:ConnectUsingSettings():

T

Quit Button

i Join Random Room Button Pressed:
Player will ry to join a random room using
PhotonNetwork.JoinRandomRoom(). If he
fails, he will create a room using
PhotonNetwork.CreateRoom().

if Start Button Pressed:
The current room closes and become invisible
and a photonView.RPC() is sent to load the
GameScene using
PhotonNetwork.LoadLevel().




Simple Networked FPS

Sébastien Feser

4 Project Organisation

4.1 File Hierarchy

Materials

Photon

PhysicsMaterial

Resources

Ball.prefab

Assets

Player.prefab

Scenes

Scripts

Sprites

TextMesh Pro

GameLauncher
— Bullet.cs
GameScene
— GameManager.cs
GameScene Mater cs
— PlayerCamera.cs
PlayerController.cs
MainPannel.cs
Lobby

TopPannel.cs




Simple Networked FPS Sébastien Feser

4.2 class UML

Class MaterialObservable

Color syncColor
Vector3 tempColor.
MeshRenderer renderer,

Void Update()
+void

Class PlayerController

Class GameManager

- float movementSpeed; —

- GameObiject ball TextMeshProUGUI centralScreenText
Camera playerCamera; - TextMeshProUGUI scoreText;
TextMeshProUGUI timeText;

Class PlayerCamera AudioSource shootSource;

" PR —— AudioSource shootFailedSource: Image reloadgar;
string mouseXinput, mouseYInpul _ MeshRenderer] playerMeshRenderers GameObject reloadingPannel;
float mouseSensitivity _ GameManager gameManager. - string playerKilledOrKillerName;

Transform playerBody;
float xAxisClamp:

~Rigidbody playerRigidbody; float hasBeenkilled TextTime:

 bool canshoot - float hasKiledTextTime:

~float reloadTime - Materai] layerColors

float reloadCurrentTime: int kilScore:

~bool islnvincible: ~Vector3] nfalSpavnPoints;

 bool isinGameState; PlayerController ocalPlayerController
Listein®> playerScore;

void Awake()
void LockCursor()

void Update()

void CameraRotation|

void ClampXAxisRotationToValuefloat)

- AudioSource deathSource;

void Start() AudioSource kilSource:

void Update) enum GameState;

void Shooting0) Gamestate gameState.
[PunRPC] void SpawnBall (Vector3, Vector3, int) - bool hasLoaded;

- bool hasStartedCountDownCoroutine:

- bool hasRes
- float bulletve
~float inv
- int victoryScore:

int winnerActorNumber,

ty
imeWhenRespawned;

- void Start()
void Update()
- void WaitingToStart)
- void SpawnPlayer()
void GivePointsToKiller(int)
Class Bullet void Die(int),

- void RespawnPlayer();
float time; void StartScore)
int hitPlayerindex IEny HasKiller()
int killerActorNumber. IEnu HasBeenKilled(
float timeToDestroy; IEny GameStartCoroutine()
AusioSource fireBumsSource: - IEnumerator Victory()

[PUNRPC] void GivePointsToKiller(int, int),

vold Star(; [PunRPC] void EndGame(int)
void Update()
void OnTriggerEnter(Collider);

5 Networking

5.1 Photon View

The Photon View is a tool that has to be on a Networked Gameobject. It is used
to send RPCs and to add other components like the Transform View Classic,
the Rigidbody View and the OnPhotonSerializeView. It also allows to access
to the Photon Actor Number that allows to differentiate every players.

5.2 Transform View Classic

The Transform View Classic provided by Photon Pun is used to interpolate the
position and the rotation of the other clients gameObjects. It’s placed on the
Player prefab.

5.3 RigidBodyView

The Rigidbody view provided by Photon Pun is used to send the player speed
to the other clients. It’s placed on the Player prefab.



Simple Networked FPS Sébastien Feser

5.4 OnPhotonSerializeView

The function OnPhotonSerializeView provided by Photon Pun is used to syn-
chronise the materials of the players in the MaterialObservable script.

5.5 RPCs

RPCs are used to update informations about the state of the game and to
instantiate the bullet.

5.5.1 RPCs in PlayerController.cs

e SpawnBall(Vector3 position, Vector3 velocity, int killerActor-
Number): Used to instantiate the bullet for each players at the same
position.

5.5.2 RPCs in GameManager.cs

¢ GivePointsToKiller(int killer ActorNumber, int killedActorNum-
ber): Informs the killer who he has killed and informs everyone that the
killer will get his points.

¢ EndGame(int winnerActorNumberInRPC): Inform everyone who
won the game to switch to the end game status.

6 Conclusion

For this simple FPS, I was able to use the technology Photon Pun, it’s RPCs, the
views it provides and the OnPhotonSerializeView to synchronize my different
players. The game is basic, you can walk, shoot and move the camera but it
gives me a good overview of what I can do in photon pun.

6.1 Personal Impressions

I’'m happy about this project, about the fact I finally finished it. I've learn some
better techniques for the Networking with Photon Pun. I'm pretty sure that
I’ve reached the objectives of this module.

One thing I regret is that I wasn’t able to create a room selection list. I had
mainly problems with unity and how the UI works. I've worked on everything
but that, knowing it would’ve been a hard task to do but finally, I wasn’t able
to do it in times.



